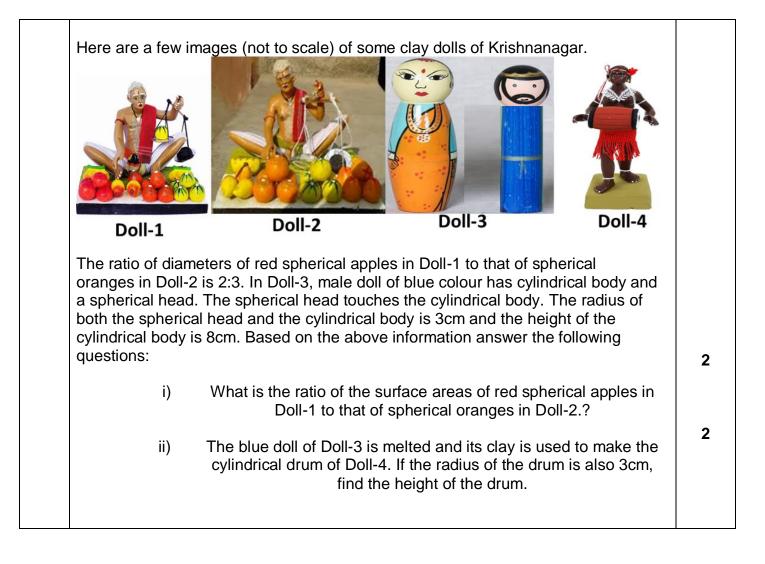
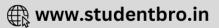
Sample Question Paper Mathematics- Basic (241) Class- X, Session: 2021-22 TERM II

Time Allowed: 2 hours

Maximum Marks: 40

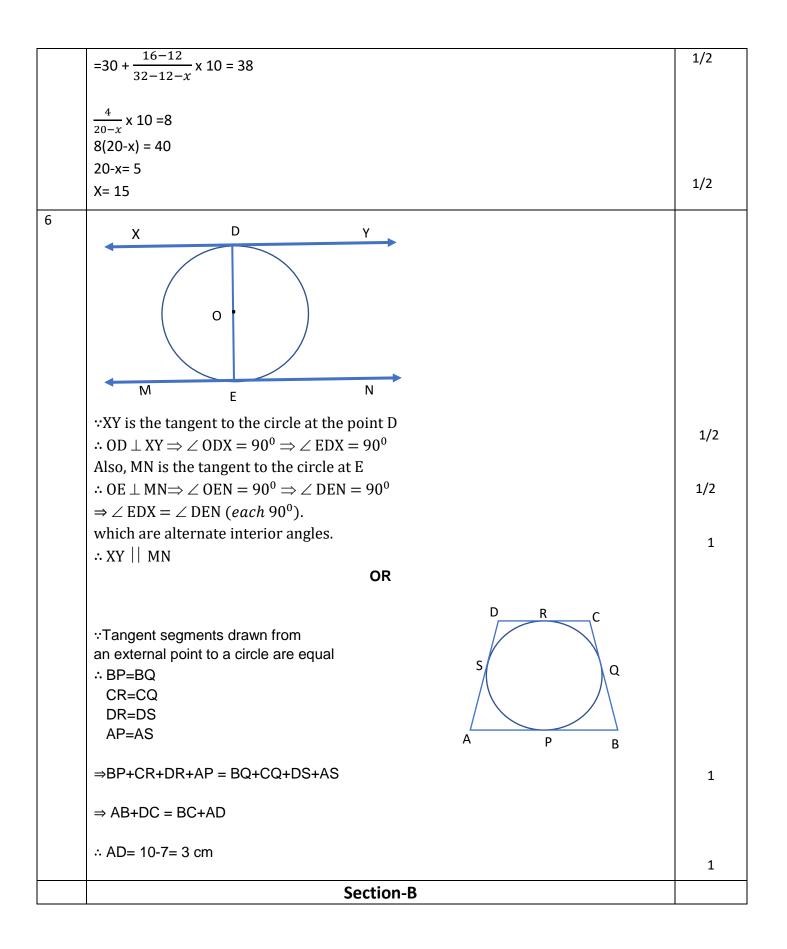

General Instructions:

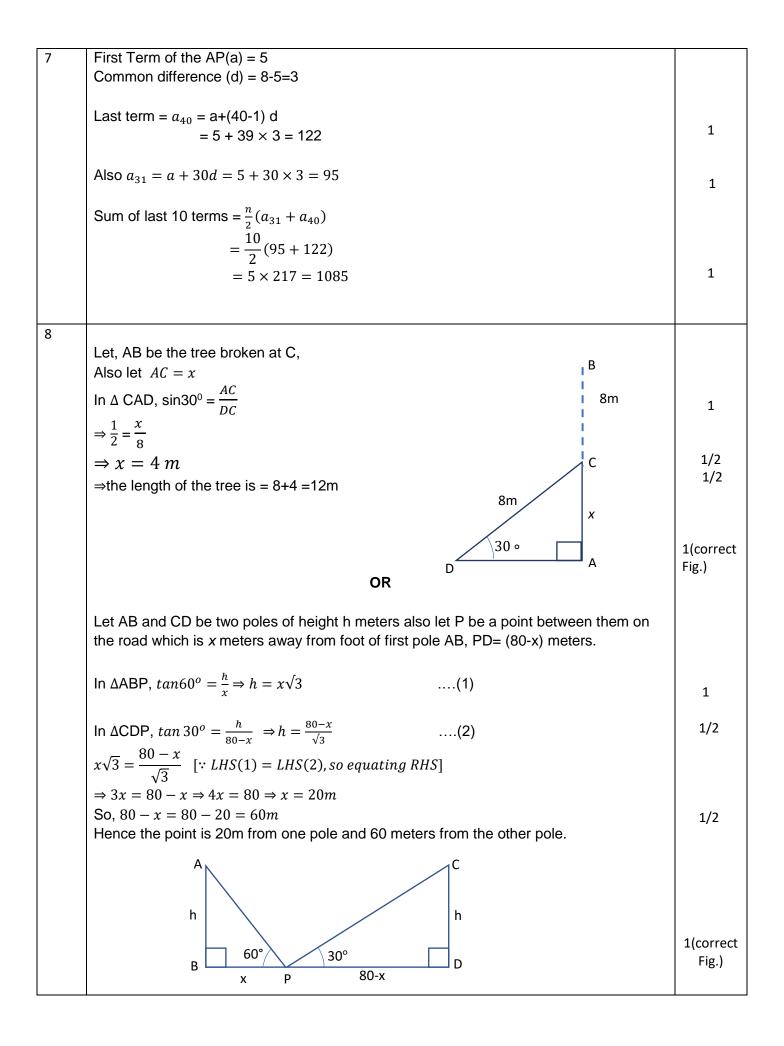
- 1. The question paper consists of 14 questions divided into 3 sections A, B, C.
- 2. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- 3. Section B comprises of 4questions of 3 marks each. Internal choice has been provided in one question.
- 4. Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study based questions.

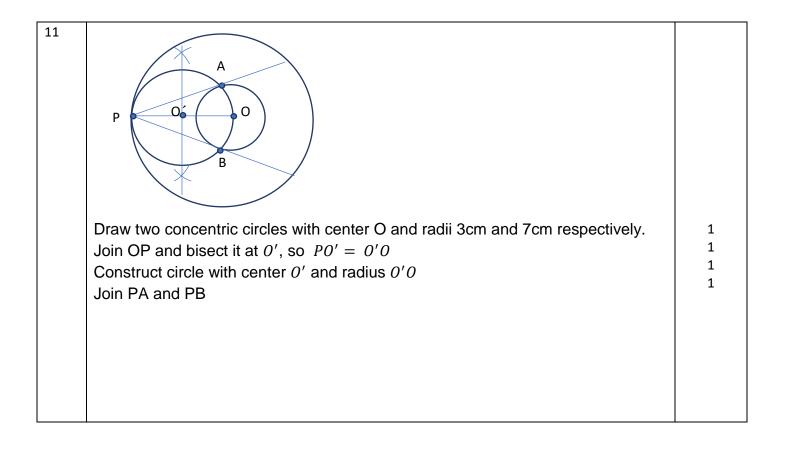

					SECT	ION A						
Q.No.												MARKS
1	Find the roots of the quadratic equation $3x^2 - 7x - 6 = 0$. OR Find the values of k for which the quadratic equation $3x^2 + kx + 3 = 0$ has real and							2				
	equal roots.			-		-						
2	Three cubes each of volume 64cm ³ are joined end to end to form a cuboid. Find the total surface area of the cuboid so formed?							2				
3	An inter house cricket match was organized by a school. Distribution of runs made by the students is given below. Find the median runs scored.							2				
	Runs scored	0-20	20-40	40-60	C	60-8	30	80	-100			
	Number of students	4	6	5		3		4				
4	Find the com the com									•	es to 6 and	2
5	The mode of Class Interval	the foll 0-10	lowing fro 10-20	equency 20-30		ibutic -40	on is 3 40-5		Find th 50-60		of x.	2
	Frequency	7	9	12	16		х		6	11		
6	XY and MN a with centre C		-		the	end	←	s of X		emeter DI	E of the circle Y N	2

the given figure, a circle is inscribed in the quadrilateral ABCD. Given AB=6cm, C=7cm and CD=4cm. Find AD.	
A B	
Section-B	2
AP 5, 8, 11has 40 terms. Find the last term. Also find the sum of the last 10 ms.	3
tree is broken due to the storm in such a way that the top of the tree touches the bund and makes an angle of 30 [°] with the ground. Length of the broken upper part the tree is 8 meters. Find the height of the tree before it was broken. OR vo poles of equal height are standing opposite each other on either side of the	3
ad 80m wide. From a point between them on the road the angles of elevation of top of the two poles are respectively 60° and 30°. Find the distance of the point on the two poles.	3
A and PB are the tangents drawn to a circle with centre O. If PA= 6 cm and APB=60 ^o , then find the length of the chord AB.	
e sum of the squares of three positive numbers that are consecutive multiples of	3
s 725. Find the three numbers.	4
e	sum of the squares of three positive numbers that are consecutive multiples of

	prepared b	Less	1	Less	Less	Less	Less	Less	Less			
	/ (go	than	than	than	than	than	than	than	than			
		10	20	30	40	50	60	70	80			
	Number o	of 14	44	82	134	184	245	287	300			
	passenge		44	02	134	104	240	201	300			
	Find the m	iean age c	of the pa	asseng	ers.							
3	•						•			ouilt on islands,		
	coasts or on cliffs. Lighthouses on water surface act as a navigational aid to the mariners and send warning to boats and ships for dangers. Initially wood, coal would											
	be used as illuminators. Gradually it was replaced by candles, lanterns, electric lights.											
	Nowadays they are run by machines and remote monitoring.											
										approximately		
		•								res. A ship and ons. Angles of		
										are 30° and 60°		
	respective	ly.							-			
	_				Α							
				300		60°						
			/	/								
	5			123	See Lor	19		- F	<u></u>			
		D			В		c >	\sim				
										-		
		Which of t distance fi				hip is n	earer t	o the li	ght hou	se. Find its		
			omine	iigiiiii	Juse							
	,					t to rea	ch the I	light ho	ouse if i	t is moving at		
	1	the rate of	20 km	per ho	ur.							
	Krishnanagar is a small town in Nadia District of West Bengal. Krishnanagar clay											
4	Krishnana	dolls are unique in their realism and quality of their finish. They are created by										
4	dolls are u	•		modelling coils of clay over a metal frame. The figures are painted in natural colours								
4	dolls are u modelling	coils of cla	ay over				•					
4	dolls are u modelling and their h	coils of cla nair is mad	ay over le eithe	r by sh	eep's \	wool or	jute. A	rtisans	make	models starting		






Marking Scheme Mathematics –Basic(241) Class- X Session- 2021-22 TERM II

Q.N. HINTS/SOLUTION 1 $3x^2 - 7x - 6 = 0$ $\Rightarrow 3x^2 - 9x + 2x - 6 = 0$ $\Rightarrow 3x(x - 3) + 2(x - 3) = 0$ $\Rightarrow (x - 3)(3x + 2) = 0$ $\because x = 3, -\frac{2}{3}$ OR Since the roots are real and equal, $\therefore D = b^2 - 4ac = 0$ $\Rightarrow k^2 - 4 \times 3 \times 3 = 0$ ($\because a = 3, b = k, c = 3$) $\Rightarrow k^2 = 36$ $\Rightarrow k = 6 \text{ or } -6$ 2 Let <i>l</i> be the side of the cube and L, B, H be the dimensions of the Since $l^3 = 64 \text{ cm}^3 \therefore l = 4 \text{ cm}$	Marks 1/2 1/2 1/2 1 1 1/2 1 1 1/2 + 1/2
$\Rightarrow 3x(x-3) + 2(x-3) = 0$ $\Rightarrow (x-3)(3x+2) = 0$ $\because x = 3, -\frac{2}{3}$ OR Since the roots are real and equal, $\therefore D = b^2 - 4ac = 0$ $\Rightarrow k^2 - 4 \times 3 \times 3 = 0 (\because a = 3, b = k, c = 3)$ $\Rightarrow k^2 = 36$ $\Rightarrow k = 6 \text{ or } -6$ 2 Let <i>l</i> be the side of the cube and L, B, H be the dimensions of the	1/2 1 1 1/2 +1/2
$\Rightarrow (x-3)(3x+2) = 0$ $\therefore x = 3, -\frac{2}{3}$ Since the roots are real and equal, $\therefore D = b^2 - 4ac = 0$ $\Rightarrow k^2 - 4 \times 3 \times 3 = 0 (\because a = 3, b = k, c = 3)$ $\Rightarrow k^2 = 36$ $\Rightarrow k = 6 \text{ or } -6$ 2 Let <i>l</i> be the side of the cube and L, B, H be the dimensions of the	1 1 1/2 +1/2
$\Rightarrow (x-3)(3x+2) = 0$ $\therefore x = 3, -\frac{2}{3}$ Since the roots are real and equal, $\therefore D = b^2 - 4ac = 0$ $\Rightarrow k^2 - 4 \times 3 \times 3 = 0 (\because a = 3, b = k, c = 3)$ $\Rightarrow k^2 = 36$ $\Rightarrow k = 6 \text{ or } -6$ 2 Let <i>l</i> be the side of the cube and L, B, H be the dimensions of the	1 1 1/2 +1/2
$\therefore x = 3, -\frac{2}{3}$ OR Since the roots are real and equal, $\therefore D = b^2 - 4ac = 0$ $\Rightarrow k^2 - 4 \times 3 \times 3 = 0$ ($\because a = 3, b = k, c = 3$) $\Rightarrow k^2 = 36$ $\Rightarrow k = 6 \text{ or } -6$ 2 Let <i>l</i> be the side of the cube and L, B, H be the dimensions of the	1 1 1/2 +1/2
ORSince the roots are real and equal, $\therefore D = b^2 - 4ac = 0$ $\Rightarrow k^2 - 4 \times 3 \times 3 = 0$ ($\because a = 3, b = k, c = 3$) $\Rightarrow k^2 = 36$ $\Rightarrow k = 6 \text{ or } -6$ 2Let l be the side of the cube and L, B, H be the dimensions of the	1 1/2 +1/2
Since the roots are real and equal, $\therefore D = b^2 - 4ac = 0$ $\Rightarrow k^2 - 4 \times 3 \times 3 = 0$ ($\because a = 3, b = k, c = 3$) $\Rightarrow k^2 = 36$ $\Rightarrow k = 6 \text{ or } -6$ 2 Let <i>l</i> be the side of the cube and L, B, H be the dimensions of the	1/2 +1/2
$\Rightarrow k^{2} - 4 \times 3 \times 3 = 0 (\because a = 3, b = k, c = 3)$ $\Rightarrow k^{2} = 36$ $\Rightarrow k = 6 \text{ or } -6$ 2 Let <i>l</i> be the side of the cube and L, B, H be the dimensions of the	1/2 +1/2
$\Rightarrow k^{2} = 36$ $\Rightarrow k = 6 \text{ or } -6$ 2 Let <i>l</i> be the side of the cube and L, B, H be the dimensions of the	1/2 +1/2
$\Rightarrow k = 6 \text{ or } -6$ 2 Let <i>l</i> be the side of the cube and L, B, H be the dimensions of the	
2 Let <i>l</i> be the side of the cube and L, B, H be the dimensions of the	
	e cuboid
Since $l^3 = 64 \ cm^3 \therefore l = 4 \ cm$	
	1/2
Total surface area of cuboid is $2[LB + BH + HL]$, Where L=12, B=4 an	id H=4 1/2
$=2(12 \times 4 + 4 \times 4 + 4 \times 12) \ cm^2 = 224 \ cm^2$	1/2
3 Runs scored Frequency Cumulative Frequency	_
0-20 4 4	
20-40 6 10	
40-60 5 15	
60-80 3 18	1/2
80-100 4 22	1/2
Total frequency $(N) = 22$	
Total frequency (N) = 22	
$\frac{N}{2}$ = 11; So 40-60 is the median class.	1/2
Median = $l + \frac{\left(\frac{N}{2}\right) - cf}{f} \times h$	1/2
)	
$= 40 + \frac{11-10}{5} \times 20$	
= 44 runs	1/2
4 The common difference is 9 - 4=5	1
If the first term is 6 and common difference is 5, then new AP is,	
6, 6+5, 6+10	
=6,11,16	1
5 : Mode = 38.	
∴ The modal class is 30-40.	1/2
Mode = $l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$	1/2
	1/2

	So the numbers are 10, 15 and 20 Section-C	1
	$\Rightarrow x = -4, 2$ $\Rightarrow x = 2 \text{ (ignoring -ve value)}$	1
	$\Rightarrow (x+4)(x-2) = 0$	
	$\Rightarrow x^2 + 2x - 8 = 0$	
	$\Rightarrow 75x^2 + 150x - 600 = 0$	
	$\Rightarrow 25x^{2} + 25x^{2} + 50x + 25 + 25x^{2} + 100x + 100 = 725$	
	Their squares are $(5x)^2$, $(5x + 5)^2$ and $(5x + 10)^2$. $(5x)^2 + (5x + 5)^2 + (5x + 10)^2 = 725$	1
10	Let the three consecutive multiples of 5 be $5x$, $5x+5$, $5x+10$.	
	$\therefore \Delta APB \text{ is an equilateral triangle.}$ So, $AB = 6cm$	1
	$\therefore \angle PAB = \angle PBA = 60^{\circ} (\because \angle PAB = \angle PBA)$	1
	Therefore, $\angle PAB + \angle PBA = 180^{\circ} - \angle APB = 180^{\circ} - 60^{\circ} = 120^{\circ}$.	
	In ΔAPB , sum of three angles is 180 ^o .	
	Also, \angle APB = 60 ⁰	
	\therefore In $\triangle APB$, \angle PAB = \angle PBA	1
9	PA = PB (Tangent segments drawn to a circle from an external point are equal)	

	Draw OA a Draw ∠ <i>0A</i> PA and PB Join OP an	A 60° 120° 0 B B B B Cle of radius 6cm and Construct $\angle AOB = 1$ $P = \angle OBP = 90^{\circ}$ are required tangents d apply tan $\angle APO = \tan 3$ of tangent = $6\sqrt{3}$ cm	_		1 1 1 1
12	Converting t	he cumulative frequency ta	able into exclu	sive classes, we get: $f_i x_i$	
			~/		
	0-10	14	5	70	
	10-20	30	15	450	
	20-30	38	25	950	
	30-40	52	35	1820	2
	40-50	50	45	2250	
	50-60	61	55	3355	
	60-70	42	65	2730	
	70-80	13	75	975	
		$\Sigma f_i = 300$		$\sum f_i x_i =$ 12600	
	Mean age =	$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{12600}{300}$			1
	$\bar{x} = 42$				1

R www.studentbro.in

13 (i)	The ship is nearer to the lighthouse as its angle of depression is greater.	
(1)	In Δ ACB, tan $60^{\circ} = \frac{AB}{BC}$	
	A	1
	$\Rightarrow \sqrt{3} = \frac{40}{BC}$	
	$\therefore BC = \frac{40}{\sqrt{3}} = \frac{40\sqrt{3}}{3}m$	
	$\sqrt{3}$ 3	
		1
	D B C	
(::)		
(ii)	In Δ ADB, tan 30 ^o = $\frac{AB}{BD}$	
	$\Rightarrow \frac{1}{\sqrt{3}} = \frac{40}{DB}$	
	$\therefore DB = 40\sqrt{3m}$	1
	Time taken to cover this distance = $\left(\frac{60}{2000} \times 40\sqrt{3}\right)$ minutes	
	$=\frac{60\sqrt{3}}{100}=2.076$ minutes	1
14 (i)	Let r_1 and r_2 be respectively the radii of apples and oranges	
	$\therefore 2r_1: 2r_2 = 2: 3 \Rightarrow r_1: r_2 = 2: 3$	1/2
	$4\pi r_1^2 : 4\pi r_2^2 = \left(\frac{r_1}{r_2}\right)^2 = \left(\frac{2}{3}\right)^2 = 4:9$	1
	$4\pi r_1^2 : 4\pi r_2^2 = \left(\frac{1}{r_2}\right) = \left(\frac{1}{3}\right) = 4:9$	$1\frac{1}{2}$
(ii)	Let the height of the drum be h.	
	Volume of the drum = volume of the cylinder + volume of the sphere $2^{2}h = (-2^{2} + 1) + (-2^{4} + 2^{3}$	1
	$\pi 3^{2} h = (\pi 3^{2} \times 8 + \frac{4}{3}\pi 3^{3}) cm^{3}$	
	$\Rightarrow h = (8 + 4)cm$ $\Rightarrow h = 12cm$	
	$\rightarrow n - 120m$	1
	1	

